EasyLoader (beta)

Current Product Don't Have Test Firmware

Note: pls, use PC chrome/edge browser, if can't connect, refresh the webpage.

1. Click connect button

2. After connected successfully, pick a firmware

3. Click the burn button

4. After burning successfully, Unplug the device and restart.





ODrive is a high-performance servo motor drive module launched by M5Stack, based on the open source motion control solution ODrive. Supports the control of a single three-phase servo motor, the peak drive current can reach 5A. It has high-speed motor control capability while providing encoder signal interface, which can realize high-precision motion control positioning. The module uses UART communication interface and is compatible with the official ODrive configuration tool and protocol (you can also configure different motor motion modes through the host computer tool to make the motor work more smoothly and stably).

  • Configure the motor parameters through the PC upper computer, and send commands to control the motor displacement through UART.

Product Features

  • Single three-phase servo motor drive
  • Peak drive current 5A
  • 12-24V DC power input interface (requires adapter output current up to 5A)
  • Communication interface: UART
  • Single channel servo motor drive/with encoder interface


  • Single module version

    • 1x ODrive Module
    • 1x 3.96-3P terminal
    • 1x 3.96-2P terminal
    • 1x 2.54-5P terminal
  • Matching motor version

    • 1x ODrive Module
    • 1x 3.96-3P terminal
    • 1x 3.96-2P terminal
    • 1x 2.54-5P terminal
    • 1x servo motor (see the specification table below for detailed parameters)
    • 1x Encoder adapter board


  • High precision motion control
  • Servo motor drive


Resources Parameter
Optional servo motor specifications phases: 3,Voltage: 24V-DC,Rated current: 4A,Rated power: 62W,Rated speed: 3000rpm
Motor driver chip DRV83018
Maximum drive current 5A
Interface Type 3.96-2P (power supply), 3.96-3P (motor), 2.54-5P (encoder)
Input power 12-24V DC
Net weight 22.5g
Gross weight 42.3g
Product Size 54.2*54.2*13.2mm
Package Size 95*65*25mm





Remark: In this case, the ODrive module is used to control the high-speed and precise rotation of the servo motor. Press button C to calibrate (do not touch the motor shaft during this period), long press and short press button A to control the motor rotation. Note: The motor parameter configuration in this case is only applicable to the motor model matched with the M5 Odrive kit. When driving other types of motors, please configure the parameters according to the motor used.



//Create an instance, specify the serial port used
ODrive odrive(Serial1);

// Commands
void setPosition(float position);
void setPosition(float position, float velocity_feedforward);
void setPosition(float position, float velocity_feedforward, float current_feedforward);
void setVelocity(float velocity);
void setVelocity(float velocity, float current_feedforward);
void setCurrent(float current);
void setGain(float pos, float vel, float vel_integrator);
void setControlMode(int32_t mode);
void setControlInputPos(float pos);
void trapezoidalMove(float position);
// Getters
float getVelocity();
float getVbusVoltage();
int32_t getEncoderShadowCount();
float getEncoderPosEstimate();
float getMotorTemp();
float getPhaseCurrent();
float getBusCurrent();
bool checkError(int32_t* axis=NULL, int32_t* motor_thermistor=NULL, int32_t* encoder=NULL, int32_t* controller=NULL);
// General params

// State helper
bool runState(int32_t requested_state, uint32_t timeout);

// device will reboot
void eraseConfig();
void reboot();
void saveConfig();
void setDefaultConfig();

float readFloat();
int32_t readInt();
void writeToDeive(const char* data);
void writeConfig(const char* config, float_t value);
void writeConfig(const char* config, int32_t value);
int32_t readConfigInt(const char*config);
float readConfigFloat(const char*config);


odrivetool is the configuration and debugging software for ODrive, through which the motor parameters can be configured. This tutorial will demonstrate the installation and basic use of odrivetool under the Linux platform.

  • Use the following command to install odrivetool v0.5.1, environment requirement: python3.
pip3 install odrive==0.5.1.post0
  • Add ~/.local/bin to the system environment variable, execute the following command, and insert export PATH=$PATH:~/.local/bin to the end of the text.
vim ~/.bashrc
  • Execute odrivetool from the command line to run the tool. Connect the ODrive module to the computer and wait for odrivetool to recognize it. After successful connection, enter odrv0.vbus_voltage to test and obtain the power supply voltage of the drive board.

ODrive control utility v0.5.1.post0
Website: https://odriverobotics.com/
Docs: https://docs.odriverobotics.com/
Forums: https://discourse.odriverobotics.com/
Discord: https://discord.gg/k3ZZ3mS
Github: https://github.com/madcowswe/ODrive/

Please connect your ODrive.
You can also type help() or quit().

Connected to ODrive 306A396A3235 as odrv0

In [1]: odrv0.vbus_voltage
  • Commonly used configuration commands.

odrv0.axis0.motor.config.current_lim [A].




For more details, Please click here to view Odrive official documents.


Q1: How do I remove the speaker floor noise when the M5Core is on or running?

Execute the following statement in Setup() of the Arduino program

Q2: How does M5Core2 stack modules?

When M5Core2 is stacked with other M5 modules, you need to remove the battery base of Core2, which does not support module stacking.

Q3: A timeout error is displayed when uploading the program to the device

Reason and solution: The power supply current of the port is insufficient, which can cause the device to not enter the download mode normally. You can try to connect a capacitor (>0.1uF) between the RST pin and the GND pin, or when uploading the program, set the G0 Short-circuit to GND, so that G0 can be set to a low level state normally

Q4: How to solve the phenomenon of automatic signal triggering of M5Core button A

Add the header file #include <driver/adc.h> and the function adc_power_acquire(); in the Arduino program

Q5: M5 device battery life

The battery life of the controller is affected by various factors such as battery capacity, operating status, and load, so there is no fixed value. Reducing the load and adopting a sleep strategy can effectively increase the battery life.

Q6: Can multiple modules with batteries be stacked at the same time?

Support multiple stacks, the total capacity of the batteries in parallel increases, and the voltage remains unchanged. However, since the discharge of each battery is not balanced during use, there is a voltage difference between the batteries, which may cause the battery to charge backwards. .(will lose part of the battery capacity)

Q7: M5 master supports WiFi connection to 5G frequency band

ESP32 module currently does not support WiFi in 5G band, only 2.4G.

Q8: The RS485 device cannot communicate normally/data is garbled. Packet loss, etc.

Confirm whether the TX/RX pin on the TTL side of the pin is correct, try to add two 120Ω terminal resistors at the beginning and end of the device line to reduce signal reflection interference

Q9: The difference between different masters and camera products

Click the link below to view the product comparison table

Q10: M5 camera image blur, how to adjust the focal length

Rotate the lens to adjust the focal length within a certain range

Q11: The control RGB LED pin of FACE II BOTTOM conflicts with the I2S DOUT pin of CORE2


Q1: How to read the programmed firmware?

Use esptool to read the flash content of esp32 and export the bin file. Refer to the detailed operation

Q2: Several solutions for esp32 board download failure in Arduino IDE board management

Restart the Arduino IDE, the computer uses the mobile AP mobile network to download.

Method 3: Download the resource package provided by M5Stack for direct installation, and extract the contents to the board management path of Arduino, such as (C:\Users\Sean\AppData\Local\Arduino15\packages), https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/arduino/packages/m5stack_v2.0.0.zip
Q3: Arduino SPIFFS file upload operation

Refer to the Github link below, use arduino-esp32fs-plugin for file upload

Q4: When M5Burner burns firmware, an error pop-up window or exception occurs

Check if the COM of the corresponding device is selected and if the M5Burner is the latest version

Q5: Does the M5 master device support multi-language display (Chinese, English, Japanese, Russian, etc.)?

UIFlow users can switch the Label font to Unicode, Arduino users can use the Chinese font library provided in the M5GFX driver library

Q6: The program cannot load the SD card normally

Confirm whether the SD card format is FAT32, and no partitions exist.

Q7: How to use Bluetooth, HTTP, SD, WebServer, FreeRTOS and other features in Arduino IDE

You can refer to the following link for other ESP32 users to share the case program

Q8: How to download programs for STAMP C3U

STAMP C3U enters program download mode operation: 1. Long press the center button (G9) of STAMP C3U when the power is off. 2. Connect to the computer, after the port is successfully identified, program burning.

Q9: How STAMP C3U defines UART0 output mode

By default, USB CDC is not enabled, the serial port output started by C3U will be output through the default pins (G20, G21) of UART0. If you want to output through USB, please use the IDE to output Its USB CDC option is enabled. (Arduino users can enable it through Tools->USB CDC on Boot-Enabled. For IDF users, please refer to the ESP IDF official documentation.)

Q10: Unable to connect to UIFlow Desktop IDE

Refer to the UIFlow documentation of the corresponding device to check whether the device has entered the USB programming mode.

Q11: NBIoT devices cannot connect to the network normally

Make sure that the NBIoT used is not locked. Frequent device replacement or after activating the IoT card, using traffic in different places may cause the card to be locked. If the above situation occurs, please contact the IoT card supplier. If you are using the IoT card matching M5, please contact M5 after-sales through e-commerce or email. (provide the ICCID of the IoT card)


Q1: Consultation for after-sales problems of products

Describe the problems encountered in detail. Screenshots of the programs involved or files can be added as attachments and sent to M5Stack's official after-sales email

Q2: Code Resources, Cases, User Communication