Frigate is an open-source NVR built on real-time AI object detection. All processing is performed locally on your own hardware, and your camera video streams never leave your home.
git clone -b rpi-axcl https://huggingface.co/AXERA-TECH/frigate-resource
File description:
m5stack@raspberrypi:~/rsp/frigate-resource $ ls -lh
total 2.8G
-rw-rw-r-- 1 m5stack m5stack 48M Oct 9 16:46 axcl_host_aarch64_V3.6.5_20250908154509_NO4973.deb
-rw-rw-r-- 1 m5stack m5stack 648 Oct 9 16:41 docker-compose.yml
-rw-rw-r-- 1 m5stack m5stack 2.8G Oct 9 16:46 frigate-rpi-axcl-f8f387a.tar
-rw-rw-r-- 1 m5stack m5stack 3.7K Oct 9 16:41 README.md
docker load -i frigate-resource/frigate-rpi-axcl-f8f387a.tar # The image file may be updated, use the actual file name.
mkdir -p ~/frigate-runtime/{config,storage}
cp frigate-resource/docker-compose.yml ~/frigate-runtime/
cd ~/frigate-runtime/
docker compose up -d
Configuration example:
#ffmpeg global variables, required
ffmpeg:
global_args: ["-hide_banner", "-loglevel", "warning", "-threads", "1"]
output_args:
detect: ["-threads", "1", "-f", "rawvideo", "-pix_fmt", "yuv420p"]
mqtt:
enabled: false
go2rtc:
streams:
#main stream
road1:
- rtsp://192.168.20.57:8554/road1.264
#sub stream
road1_sub:
- rtsp://192.168.20.57:8554/road1_sub.264
cameras:
road1:
enabled: true
ffmpeg:
inputs:
#path to the recording stream, here using the main stream set in go2rtc
#during debugging, you can use local stream files here
- path: rtsp://127.0.0.1:8554/road1
roles:
- record
#path to the detection stream, here using the sub stream set in go2rtc
#during debugging, you can use local stream files here
- path: rtsp://127.0.0.1:8554/road1_sub
roles:
- detect
#preset-rpi-64-h264 for decoding h264 stream
#preset-rpi-64-h265 for decoding h265 stream
hwaccel_args: preset-rpi-64-h264
record:
enabled: true
#Enable detection function
#If detection width/height is not set, it will default to the native resolution of the detection stream
detect:
enabled: true
width: 1280
height: 720
fps: 5
#Configure detection engine to use axengine
detectors:
axengine:
type: axengine
#Configure object detection model for axengine
model:
path: yolov5s_320
width: 320
height: 320
input_pixel_format: bgr
labelmap_path: /labelmap/coco-80.txt
#Object types to track
objects:
track:
- person
- car
- bicycle
- motorcycle
version: 0.16-0
You can preview the configuration in settings